colosseum.mdp.base_infinite
1import abc 2from typing import TYPE_CHECKING 3 4from colosseum.mdp import BaseMDP 5 6if TYPE_CHECKING: 7 from colosseum.mdp import NODE_TYPE 8 9 10class ContinuousMDP(BaseMDP, abc.ABC): 11 """ 12 The base class for continuous MDPs. 13 """ 14 15 @staticmethod 16 def is_episodic() -> bool: 17 return False 18 19 def get_grid_representation(self, node: "NODE_TYPE", h: int = None): 20 return super(ContinuousMDP, self)._get_grid_representation(node)
11class ContinuousMDP(BaseMDP, abc.ABC): 12 """ 13 The base class for continuous MDPs. 14 """ 15 16 @staticmethod 17 def is_episodic() -> bool: 18 return False 19 20 def get_grid_representation(self, node: "NODE_TYPE", h: int = None): 21 return super(ContinuousMDP, self)._get_grid_representation(node)
The base class for continuous MDPs.
def
get_grid_representation( self, node: Union[colosseum.mdp.custom_mdp.CustomNode, colosseum.mdp.river_swim.base.RiverSwimNode, colosseum.mdp.deep_sea.base.DeepSeaNode, colosseum.mdp.frozen_lake.base.FrozenLakeNode, colosseum.mdp.simple_grid.base.SimpleGridNode, colosseum.mdp.minigrid_empty.base.MiniGridEmptyNode, colosseum.mdp.minigrid_rooms.base.MiniGridRoomsNode, colosseum.mdp.taxi.base.TaxiNode], h: int = None):
20 def get_grid_representation(self, node: "NODE_TYPE", h: int = None): 21 return super(ContinuousMDP, self)._get_grid_representation(node)
Returns
- np.ndarray: An ASCII representation of the state given in input stored as numpy array.
Inherited Members
- colosseum.mdp.base.BaseMDP
- BaseMDP
- get_unique_symbols
- get_available_hardness_measures
- produce_gin_file_from_mdp_parameters
- does_seed_change_MDP_structure
- sample_parameters
- sample_mdp_parameters
- get_node_class
- n_actions
- parameters
- get_gin_parameters
- get_gin_config
- get_node_labels
- get_node_action_labels
- hash
- instantiate_MDP
- T
- R
- recurrent_nodes_set
- communication_class
- get_optimal_policy
- get_worst_policy
- get_value_functions
- optimal_value_functions
- worst_value_functions
- random_value_functions
- optimal_transition_probabilities
- worst_transition_probabilities
- random_transition_probabilities
- optimal_markov_chain
- worst_markov_chain
- random_markov_chain
- get_stationary_distribution
- optimal_stationary_distribution
- worst_stationary_distribution
- random_stationary_distribution
- optimal_average_rewards
- worst_average_rewards
- random_average_rewards
- get_average_reward
- optimal_average_reward
- worst_average_reward
- random_average_reward
- transition_matrix_and_rewards
- graph_layout
- graph_metrics
- diameter
- sum_reciprocals_suboptimality_gaps
- discounted_value_norm
- undiscounted_value_norm
- value_norm
- measures_of_hardness
- summary
- hardness_report
- get_info_class
- get_transition_distributions
- get_reward_distribution
- sample_reward
- get_measure_from_name
- action_spec
- observation_spec
- get_observation
- reset
- step
- random_steps
- random_step
- get_visitation_counts
- reset_visitation_counts
- get_value_node_labels
- dm_env._environment.Environment
- reward_spec
- discount_spec
- close