colosseum.noises.student_t_uncorrelated

 1from typing import Callable, List
 2
 3import numpy as np
 4
 5from colosseum.noises.base import Noise
 6
 7
 8class StudentTUncorrelated(Noise):
 9    """
10    The class that creates Student's t uncorrelated noise.
11    """
12
13    def _sample_noise(self, n: int) -> np.ndarray:
14        return self._rng.standard_t(self._df, *self.shape)
15
16    def __init__(self, seed: int, shape_f: Callable[[], List[int]], df: float = 3):
17        """
18        Parameters
19        ----------
20        seed : int
21            The random seed.
22        shape_f : Callable[[], List[int]]
23            The function that returns the shape of the emission map.
24        df : int
25            The degree of freedom of the Student's t distribution.
26        """
27        super(StudentTUncorrelated, self).__init__(seed, shape_f)
28
29        self._df = df
class StudentTUncorrelated(colosseum.noises.base.Noise):
 9class StudentTUncorrelated(Noise):
10    """
11    The class that creates Student's t uncorrelated noise.
12    """
13
14    def _sample_noise(self, n: int) -> np.ndarray:
15        return self._rng.standard_t(self._df, *self.shape)
16
17    def __init__(self, seed: int, shape_f: Callable[[], List[int]], df: float = 3):
18        """
19        Parameters
20        ----------
21        seed : int
22            The random seed.
23        shape_f : Callable[[], List[int]]
24            The function that returns the shape of the emission map.
25        df : int
26            The degree of freedom of the Student's t distribution.
27        """
28        super(StudentTUncorrelated, self).__init__(seed, shape_f)
29
30        self._df = df

The class that creates Student's t uncorrelated noise.

StudentTUncorrelated(seed: int, shape_f: Callable[[], List[int]], df: float = 3)
17    def __init__(self, seed: int, shape_f: Callable[[], List[int]], df: float = 3):
18        """
19        Parameters
20        ----------
21        seed : int
22            The random seed.
23        shape_f : Callable[[], List[int]]
24            The function that returns the shape of the emission map.
25        df : int
26            The degree of freedom of the Student's t distribution.
27        """
28        super(StudentTUncorrelated, self).__init__(seed, shape_f)
29
30        self._df = df
Parameters
  • seed (int): The random seed.
  • shape_f (Callable[[], List[int]]): The function that returns the shape of the emission map.
  • df (int): The degree of freedom of the Student's t distribution.